Spectral radius conditions for fractional [a,b]-covered graphs
نویسندگان
چکیده
A graph G is called fractional [a,b]-covered if for every edge e of there a [a,b]-factor with the indicator function h such that h(e)=1. In this paper, we provide tight spectral radius condition graphs being [a,b]-covered.
منابع مشابه
On graphs whose spectral radius
The structure of graphs whose largest eigenvalue is bounded by 3 2 √ 2 (≈ 2.1312) is investigated. In particular, such a graph can have at most one circuit, and has a natural quipu structure.
متن کاملSome Results on Fractional Covered Graphs∗
Let G = (V (G),E(G)) be a graph. and let g, f be two integer-valued functions defined on V (G) such that g(x)≤ f (x) for all x ∈V (G). G is called fractional (g, f )-covered if each edge e of G belongs to a fractional (g, f )-factor Gh such that h(e) = 1, where h is the indicator function of Gh. In this paper, sufficient conditions related to toughness and isolated toughness for a graph to be f...
متن کاملNotes on Fractional k-Covered Graphs
A graph G is fractional k-covered if for each edge e of G, there exists a fractional k-factor h, such that h(e) = 1. If k = 2, then a fractional k-covered graph is called a fractional 2-covered graph. The binding number bind(G) is defined as follows, bind(G) = min{ |NG(X)| |X| : Ø = X ⊆ V (G), NG(X) = V (G)}. In this paper, it is proved that G is fractional 2-covered if δ(G) ≥ 4 and bind(G) > 5...
متن کاملOn the spectral radius of graphs
Let G be a simple undirected graph. For v ∈ V (G), the 2-degree of v is the sum of the degrees of the vertices adjacent to v. Denote by ρ(G) and μ(G) the spectral radius of the adjacency matrix and the Laplacian matrix of G, respectively. In this paper, we present two lower bounds of ρ(G) and μ(G) in terms of the degrees and the 2-degrees of vertices. © 2004 Elsevier Inc. All rights reserved. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2023
ISSN: ['1873-1856', '0024-3795']
DOI: https://doi.org/10.1016/j.laa.2023.02.014